
w w w . b i j o n l i n e . c o m 	 O c t o b e r 	 2 0 0 5

O p t i m i z i n g 	 B u s i n e s s 	 I n t e g r a t i o n 	 & 	 E f f e c t i v e n e s s 	 T h r o u g h 	 L e a d i n g - E d g e 	 T e c h n o l o g i e s

A P U B L I C A T I O N

10 Best Practices for
Creating an SOA

The Power of Information

in Supply Chain
Collaboration

The Return of B2B: How
Four Industries Rate

ALSO IN THIS ISSUE:

Enterpr ise	 Integr i ty: 	 Composite	
Appl icat ion	Platforms—Par t 	 I I I

By Davi D McG ove ran

In the
previous two

columns of this
series, we’ve examined the
design time facilities
required for a Composite
Application Platform (CAP).
A CAP is an essential
component of an SOA, one
that enables the service
definition, reuse,
orchestration, and
maintenance required for an
agile IT infrastructure. This
month, we turn our attention
to the run-time facilities,

completing the task next month. Of course, the design time
and run-time facilities need to be seamlessly integrated so
the developer can create, test, deploy, and maintain
composite applications without resorting to costly and risky
changes from development to production environments.
 In a well-integrated, model-driven design, development,
and deployment environment, run-time facilities can be
conceptual rather than physical. These facilities are hardly
distinguishable from those used for system test and debug;
the differences being more a matter of preferences and
configuration than capabilities. Realizing the advantages of
SOA requires an iterative, incremental approach to service
composition in which a running system can be extended or
modified component by component without risk to the
overall application. Failing this, SOA becomes little more
than a conceptual architecture replete with numerous
complexly interacting standards.
 A CAP should include the following run-time facilities:

• Orchestration: The services that comprise a composite
application need to be managed at run-time according to
an orchestration model, implementing the composite
application by managing context, the real-time invocation
(or activation) and termination (or completion) of the
component services, and service interconnection (includ-
ing data access and transformation). All aspects of run-
time orchestration should be model-driven. Orchestration
shouldn’t limit the methods by which services are imple-
mented, the manner in which they are invoked, or the
messaging protocols used. Orchestration includes collab-
orative context management, enabling services to transfer
or share a context at run-time, thus providing appropriate
cohesion while maintaining the loose coupling and late
binding essential for composite applications. The execu-
tion language can limit the ability to compose services that
run the way the business expects, creating instead a func-
tional but unrecognizable IT parody of business processes.

• Interface Management: A CAP is of little value if the
orchestration engine can’t communicate with services as
implemented. It must be able to communicate both control
flow and data flow in a coordinated fashion, though these

E n t E r p r I s E
I n t E G r I t Y
C o m p o s i t e
A p p l i c a t i o n
p l a t f o r m s :
p a r t I I I

B Y D A v I D m c G o v E r A n

may be separately defined and quite distinct. Support for a
variety of transports and end-point adapters (e.g., messag-
ing, middleware, files and databases, applications, and pre-
sentation software) is essential in today’s IT and is an
interface management issue.

• Service Access: Underlying systems should be decoupled
from business applications, components, and processes,
permitting composite applications to integrate with any
existing infrastructure. A central interface controls com-
munication with participating systems via an extensible
exchange infrastructure such as that provided by Web
Services. Composite application designers shouldn’t need
technical knowledge of component or service implementa-
tion, or interfaces, whether native or external.

• Monitoring: The ability to detect and capture data relating
to key events within the composite application is highly
desirable in a CAP, enabling both technical and business
managers to more effectively manage the use of resources.
More often than not, such events will require some form
of analytic computation in order to convert them from raw
measurements into business metrics.

• Dashboards: A facility to design and display the status of
monitored orchestration instances and the metrics they
produce is needed not only by business managers, but by
technical and system administrators as well. It should be
possible to generate printable reports as well. Portal-based
dashboards are a common implementation.

• Native Run-Time Environment: A distributed, highly
available enterprise-class application server or enterprise
service bus is the primary run-time environment for a
CAP, including the orchestration, interface management,
and native components. The native run-time environ-
ment should support instance pooling, load balancing
across multiple instances, standard interfaces, and mes-
saging protocols.

• Repository: A CAP requires a sophisticated DBMS and
meta-schema repository to manage and enable appropriate
reuse. Many data objects must be stored by the repository,
including orchestration definitions, integrity rules,
instance histories, messages and data flows, business met-
ric definitions and data, business analytic and dashboard
definitions, along with saved data, transaction definitions
and data, security and policy definitions, access histories,
error events and resolutions, and so on.

 Next month, we’ll look at more run-time facilities and
some additional concerns. Until then, remember: Well-
designed CAPs accelerate SOA adoption and financial
return for your enterprise, but only if the interfaces are
elegant and the internals have architectural integrity. bij

David McGoveran is president of Alternative Technologies. He has more than 25
years of experience with mission-critical applications and has authored numerous
technical articles on application integration.
e-Mail: mcgoveran@bijonline.com; Website: www.alternativetech.com

About the Author

� • B u s i n e s s i n t e g r a t i o n J o u r n a l • o c t o b e r 2 0 0 5

